p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.9C23, C8⋊Q8.1C2, C4⋊C4.44D4, C4⋊Q8.39C22, C8⋊C4.2C22, C42.2C22.C2, C2.24(D4.8D4), C22.190C22≀C2, C42.C2.7C22, C22.58C24.C2, C2.22(D4.10D4), C42.30C22.4C2, (C2×C4).222(C2×D4), SmallGroup(128,395)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.9C23
G = < a,b,c,d,e | a4=b4=1, c2=e2=a2, d2=a2b2, ab=ba, cac-1=dad-1=a-1, eae-1=a-1b2, cbc-1=ebe-1=b-1, dbd-1=a2b-1, dcd-1=ac, ece-1=bc, de=ed >
Subgroups: 168 in 86 conjugacy classes, 30 normal (12 characteristic)
C1, C2, C2, C4, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×Q8, C8⋊C4, C8⋊C4, Q8⋊C4, C4.Q8, C2.D8, C42.C2, C42.C2, C42.C2, C4⋊Q8, C42.2C22, C42.2C22, C42.30C22, C8⋊Q8, C22.58C24, C42.9C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, D4.8D4, D4.10D4, C42.9C23
Character table of C42.9C23
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 16 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | symplectic lifted from D4.10D4, Schur index 2 |
ρ16 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | symplectic lifted from D4.10D4, Schur index 2 |
ρ17 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | symplectic lifted from D4.10D4, Schur index 2 |
ρ18 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | symplectic lifted from D4.10D4, Schur index 2 |
ρ19 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | complex lifted from D4.8D4 |
ρ20 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | complex lifted from D4.8D4 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 20 13 5)(2 17 14 6)(3 18 15 7)(4 19 16 8)(9 121 118 128)(10 122 119 125)(11 123 120 126)(12 124 117 127)(21 29 35 26)(22 30 36 27)(23 31 33 28)(24 32 34 25)(37 42 47 50)(38 43 48 51)(39 44 45 52)(40 41 46 49)(53 58 67 63)(54 59 68 64)(55 60 65 61)(56 57 66 62)(69 76 79 84)(70 73 80 81)(71 74 77 82)(72 75 78 83)(85 92 97 93)(86 89 98 94)(87 90 99 95)(88 91 100 96)(101 116 111 106)(102 113 112 107)(103 114 109 108)(104 115 110 105)
(1 71 3 69)(2 70 4 72)(5 74 7 76)(6 73 8 75)(9 68 11 66)(10 67 12 65)(13 77 15 79)(14 80 16 78)(17 81 19 83)(18 84 20 82)(21 85 23 87)(22 88 24 86)(25 89 27 91)(26 92 28 90)(29 93 31 95)(30 96 32 94)(33 99 35 97)(34 98 36 100)(37 101 39 103)(38 104 40 102)(41 107 43 105)(42 106 44 108)(45 109 47 111)(46 112 48 110)(49 113 51 115)(50 116 52 114)(53 117 55 119)(54 120 56 118)(57 121 59 123)(58 124 60 122)(61 125 63 127)(62 128 64 126)
(1 45 15 37)(2 48 16 40)(3 47 13 39)(4 46 14 38)(5 50 18 44)(6 49 19 43)(7 52 20 42)(8 51 17 41)(9 97 120 87)(10 100 117 86)(11 99 118 85)(12 98 119 88)(21 67 33 55)(22 66 34 54)(23 65 35 53)(24 68 36 56)(25 62 30 59)(26 61 31 58)(27 64 32 57)(28 63 29 60)(69 110 77 102)(70 109 78 101)(71 112 79 104)(72 111 80 103)(73 116 83 108)(74 115 84 107)(75 114 81 106)(76 113 82 105)(89 127 96 122)(90 126 93 121)(91 125 94 124)(92 128 95 123)
(1 29 3 31)(2 25 4 27)(5 35 7 33)(6 24 8 22)(9 102 11 104)(10 111 12 109)(13 26 15 28)(14 32 16 30)(17 34 19 36)(18 23 20 21)(37 63 39 61)(38 57 40 59)(41 54 43 56)(42 67 44 65)(45 60 47 58)(46 64 48 62)(49 68 51 66)(50 53 52 55)(69 99 71 97)(70 86 72 88)(73 94 75 96)(74 92 76 90)(77 85 79 87)(78 100 80 98)(81 89 83 91)(82 93 84 95)(101 117 103 119)(105 121 107 123)(106 127 108 125)(110 118 112 120)(113 126 115 128)(114 122 116 124)
G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,20,13,5)(2,17,14,6)(3,18,15,7)(4,19,16,8)(9,121,118,128)(10,122,119,125)(11,123,120,126)(12,124,117,127)(21,29,35,26)(22,30,36,27)(23,31,33,28)(24,32,34,25)(37,42,47,50)(38,43,48,51)(39,44,45,52)(40,41,46,49)(53,58,67,63)(54,59,68,64)(55,60,65,61)(56,57,66,62)(69,76,79,84)(70,73,80,81)(71,74,77,82)(72,75,78,83)(85,92,97,93)(86,89,98,94)(87,90,99,95)(88,91,100,96)(101,116,111,106)(102,113,112,107)(103,114,109,108)(104,115,110,105), (1,71,3,69)(2,70,4,72)(5,74,7,76)(6,73,8,75)(9,68,11,66)(10,67,12,65)(13,77,15,79)(14,80,16,78)(17,81,19,83)(18,84,20,82)(21,85,23,87)(22,88,24,86)(25,89,27,91)(26,92,28,90)(29,93,31,95)(30,96,32,94)(33,99,35,97)(34,98,36,100)(37,101,39,103)(38,104,40,102)(41,107,43,105)(42,106,44,108)(45,109,47,111)(46,112,48,110)(49,113,51,115)(50,116,52,114)(53,117,55,119)(54,120,56,118)(57,121,59,123)(58,124,60,122)(61,125,63,127)(62,128,64,126), (1,45,15,37)(2,48,16,40)(3,47,13,39)(4,46,14,38)(5,50,18,44)(6,49,19,43)(7,52,20,42)(8,51,17,41)(9,97,120,87)(10,100,117,86)(11,99,118,85)(12,98,119,88)(21,67,33,55)(22,66,34,54)(23,65,35,53)(24,68,36,56)(25,62,30,59)(26,61,31,58)(27,64,32,57)(28,63,29,60)(69,110,77,102)(70,109,78,101)(71,112,79,104)(72,111,80,103)(73,116,83,108)(74,115,84,107)(75,114,81,106)(76,113,82,105)(89,127,96,122)(90,126,93,121)(91,125,94,124)(92,128,95,123), (1,29,3,31)(2,25,4,27)(5,35,7,33)(6,24,8,22)(9,102,11,104)(10,111,12,109)(13,26,15,28)(14,32,16,30)(17,34,19,36)(18,23,20,21)(37,63,39,61)(38,57,40,59)(41,54,43,56)(42,67,44,65)(45,60,47,58)(46,64,48,62)(49,68,51,66)(50,53,52,55)(69,99,71,97)(70,86,72,88)(73,94,75,96)(74,92,76,90)(77,85,79,87)(78,100,80,98)(81,89,83,91)(82,93,84,95)(101,117,103,119)(105,121,107,123)(106,127,108,125)(110,118,112,120)(113,126,115,128)(114,122,116,124)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,20,13,5)(2,17,14,6)(3,18,15,7)(4,19,16,8)(9,121,118,128)(10,122,119,125)(11,123,120,126)(12,124,117,127)(21,29,35,26)(22,30,36,27)(23,31,33,28)(24,32,34,25)(37,42,47,50)(38,43,48,51)(39,44,45,52)(40,41,46,49)(53,58,67,63)(54,59,68,64)(55,60,65,61)(56,57,66,62)(69,76,79,84)(70,73,80,81)(71,74,77,82)(72,75,78,83)(85,92,97,93)(86,89,98,94)(87,90,99,95)(88,91,100,96)(101,116,111,106)(102,113,112,107)(103,114,109,108)(104,115,110,105), (1,71,3,69)(2,70,4,72)(5,74,7,76)(6,73,8,75)(9,68,11,66)(10,67,12,65)(13,77,15,79)(14,80,16,78)(17,81,19,83)(18,84,20,82)(21,85,23,87)(22,88,24,86)(25,89,27,91)(26,92,28,90)(29,93,31,95)(30,96,32,94)(33,99,35,97)(34,98,36,100)(37,101,39,103)(38,104,40,102)(41,107,43,105)(42,106,44,108)(45,109,47,111)(46,112,48,110)(49,113,51,115)(50,116,52,114)(53,117,55,119)(54,120,56,118)(57,121,59,123)(58,124,60,122)(61,125,63,127)(62,128,64,126), (1,45,15,37)(2,48,16,40)(3,47,13,39)(4,46,14,38)(5,50,18,44)(6,49,19,43)(7,52,20,42)(8,51,17,41)(9,97,120,87)(10,100,117,86)(11,99,118,85)(12,98,119,88)(21,67,33,55)(22,66,34,54)(23,65,35,53)(24,68,36,56)(25,62,30,59)(26,61,31,58)(27,64,32,57)(28,63,29,60)(69,110,77,102)(70,109,78,101)(71,112,79,104)(72,111,80,103)(73,116,83,108)(74,115,84,107)(75,114,81,106)(76,113,82,105)(89,127,96,122)(90,126,93,121)(91,125,94,124)(92,128,95,123), (1,29,3,31)(2,25,4,27)(5,35,7,33)(6,24,8,22)(9,102,11,104)(10,111,12,109)(13,26,15,28)(14,32,16,30)(17,34,19,36)(18,23,20,21)(37,63,39,61)(38,57,40,59)(41,54,43,56)(42,67,44,65)(45,60,47,58)(46,64,48,62)(49,68,51,66)(50,53,52,55)(69,99,71,97)(70,86,72,88)(73,94,75,96)(74,92,76,90)(77,85,79,87)(78,100,80,98)(81,89,83,91)(82,93,84,95)(101,117,103,119)(105,121,107,123)(106,127,108,125)(110,118,112,120)(113,126,115,128)(114,122,116,124) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,20,13,5),(2,17,14,6),(3,18,15,7),(4,19,16,8),(9,121,118,128),(10,122,119,125),(11,123,120,126),(12,124,117,127),(21,29,35,26),(22,30,36,27),(23,31,33,28),(24,32,34,25),(37,42,47,50),(38,43,48,51),(39,44,45,52),(40,41,46,49),(53,58,67,63),(54,59,68,64),(55,60,65,61),(56,57,66,62),(69,76,79,84),(70,73,80,81),(71,74,77,82),(72,75,78,83),(85,92,97,93),(86,89,98,94),(87,90,99,95),(88,91,100,96),(101,116,111,106),(102,113,112,107),(103,114,109,108),(104,115,110,105)], [(1,71,3,69),(2,70,4,72),(5,74,7,76),(6,73,8,75),(9,68,11,66),(10,67,12,65),(13,77,15,79),(14,80,16,78),(17,81,19,83),(18,84,20,82),(21,85,23,87),(22,88,24,86),(25,89,27,91),(26,92,28,90),(29,93,31,95),(30,96,32,94),(33,99,35,97),(34,98,36,100),(37,101,39,103),(38,104,40,102),(41,107,43,105),(42,106,44,108),(45,109,47,111),(46,112,48,110),(49,113,51,115),(50,116,52,114),(53,117,55,119),(54,120,56,118),(57,121,59,123),(58,124,60,122),(61,125,63,127),(62,128,64,126)], [(1,45,15,37),(2,48,16,40),(3,47,13,39),(4,46,14,38),(5,50,18,44),(6,49,19,43),(7,52,20,42),(8,51,17,41),(9,97,120,87),(10,100,117,86),(11,99,118,85),(12,98,119,88),(21,67,33,55),(22,66,34,54),(23,65,35,53),(24,68,36,56),(25,62,30,59),(26,61,31,58),(27,64,32,57),(28,63,29,60),(69,110,77,102),(70,109,78,101),(71,112,79,104),(72,111,80,103),(73,116,83,108),(74,115,84,107),(75,114,81,106),(76,113,82,105),(89,127,96,122),(90,126,93,121),(91,125,94,124),(92,128,95,123)], [(1,29,3,31),(2,25,4,27),(5,35,7,33),(6,24,8,22),(9,102,11,104),(10,111,12,109),(13,26,15,28),(14,32,16,30),(17,34,19,36),(18,23,20,21),(37,63,39,61),(38,57,40,59),(41,54,43,56),(42,67,44,65),(45,60,47,58),(46,64,48,62),(49,68,51,66),(50,53,52,55),(69,99,71,97),(70,86,72,88),(73,94,75,96),(74,92,76,90),(77,85,79,87),(78,100,80,98),(81,89,83,91),(82,93,84,95),(101,117,103,119),(105,121,107,123),(106,127,108,125),(110,118,112,120),(113,126,115,128),(114,122,116,124)]])
Matrix representation of C42.9C23 ►in GL8(𝔽17)
1 | 0 | 15 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
1 | 16 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 | 16 | 4 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 10 | 0 | 1 |
1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 16 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 16 | 4 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 12 | 13 |
9 | 8 | 1 | 12 | 0 | 0 | 0 | 0 |
2 | 10 | 3 | 15 | 0 | 0 | 0 | 0 |
7 | 15 | 15 | 10 | 0 | 0 | 0 | 0 |
4 | 13 | 13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 | 2 | 8 |
0 | 0 | 0 | 0 | 15 | 11 | 15 | 15 |
0 | 0 | 0 | 0 | 5 | 12 | 8 | 8 |
0 | 0 | 0 | 0 | 10 | 14 | 13 | 7 |
7 | 9 | 3 | 12 | 0 | 0 | 0 | 0 |
15 | 15 | 16 | 13 | 0 | 0 | 0 | 0 |
6 | 7 | 8 | 2 | 0 | 0 | 0 | 0 |
13 | 3 | 14 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 8 | 6 | 15 |
0 | 0 | 0 | 0 | 8 | 4 | 0 | 9 |
0 | 0 | 0 | 0 | 16 | 6 | 0 | 15 |
0 | 0 | 0 | 0 | 6 | 8 | 6 | 11 |
9 | 12 | 2 | 3 | 0 | 0 | 0 | 0 |
8 | 14 | 8 | 11 | 0 | 0 | 0 | 0 |
6 | 16 | 10 | 4 | 0 | 0 | 0 | 0 |
16 | 5 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 5 | 0 | 5 | 4 |
0 | 0 | 0 | 0 | 6 | 7 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(8,GF(17))| [1,0,1,1,0,0,0,0,0,0,0,16,0,0,0,0,15,16,16,16,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,1,11,0,0,0,0,0,16,0,10,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,1],[1,1,0,1,0,0,0,0,15,16,16,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,4,12,0,0,0,0,1,0,16,0,0,0,0,0,0,0,4,12,0,0,0,0,0,0,0,13],[9,2,7,4,0,0,0,0,8,10,15,13,0,0,0,0,1,3,15,13,0,0,0,0,12,15,10,0,0,0,0,0,0,0,0,0,8,15,5,10,0,0,0,0,0,11,12,14,0,0,0,0,2,15,8,13,0,0,0,0,8,15,8,7],[7,15,6,13,0,0,0,0,9,15,7,3,0,0,0,0,3,16,8,14,0,0,0,0,12,13,2,4,0,0,0,0,0,0,0,0,2,8,16,6,0,0,0,0,8,4,6,8,0,0,0,0,6,0,0,6,0,0,0,0,15,9,15,11],[9,8,6,16,0,0,0,0,12,14,16,5,0,0,0,0,2,8,10,12,0,0,0,0,3,11,4,1,0,0,0,0,0,0,0,0,0,5,6,1,0,0,0,0,0,0,7,0,0,0,0,0,0,5,0,0,0,0,0,0,1,4,16,0] >;
C42.9C23 in GAP, Magma, Sage, TeX
C_4^2._9C_2^3
% in TeX
G:=Group("C4^2.9C2^3");
// GroupNames label
G:=SmallGroup(128,395);
// by ID
G=gap.SmallGroup(128,395);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,456,422,184,1123,570,521,136,3924,1411,998,242]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=e^2=a^2,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,e*a*e^-1=a^-1*b^2,c*b*c^-1=e*b*e^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=a*c,e*c*e^-1=b*c,d*e=e*d>;
// generators/relations
Export